بهینه‌سازی تعداد، محل و اندازه منابع تولید پراکنده و جبران ساز سنکرون استاتیکی با روش الگوریتم ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه آزاد اسلامی بوشهر، بوشهر، ایران

چکیده

استفاده از ادوات فکتس و منابع تولید پراکنده به‌عنوان یک تکنولوژی در سیستم‌های قدرت و توزیع هر روز افزایش می‌یابد. این تجهیزات بر روی پارامترهای متعددی همچون پروفیل ولتاژ، تلفات خط، جریان اتصال کوتاه، پایداری و قابلیت اطمینان سیستم تأثیرگذار می‌باشند و بنابراین تعیین محل بهینه نصب، تعداد و اندازه آن‌ها یکی از مسائل مهمی می‌باشد که مورد توجه می‌باشد زیرا نصب این ادوات و منابع در محل‌های غیر بهینه سبب افزایش تلفات سیستم و تأثیر منفی بر پروفیل ولتاژ و سایر پارامترهای سیستم می‌شود. در این مقاله به بهینه‌سازی هم‌زمان تعداد، محل و اندازه منابع تولیدات پراکنده و جبران ساز سنکرون استاتیکی پرداخته شده و به‌منظور حل مسئله بهینه‌سازی از الگوریتم ژنتیک (GA) استفاده شده است. به همین منظور تابع چند هدفه شامل هزینه‌های بهره‌برداری و تولید منابع تولیدات پراکنده و جبران ساز سنکرون استاتیکی و قابلیت بارپذیری سیستم ارائه شده است و نتایج حاصل از شبیه‌سازی برای دو شبکه نمونه 33 و 69 باس استاندارد IEEE مورد تحلیل و بررسی قرار گرفت. نتایج به دست آمده نشان می‌دهد که با افزایش بارپذیری سیستم، هزینه افزایش می‌یابد زیرا تعداد تجهیزات مربوط به منابع تولید پراکنده و جبران ساز سنکرون استاتیکی بیشتر می‌شود. همچنین بهینه‌سازی و جایابی هم‌زمان این تجهیزات، سبب کاهش هزینه‌ها و افزایش بارپذیری سیستم توزیع می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimize the Number, Locating, and Sizing of D-STATCOM and DGs Using GA Algorithm

نویسندگان [English]

  • mohammad khadem
  • mostafa esmaeilbeig
Islamic Azad University Bushehr Branch, Bushehr, Iran
چکیده [English]

Recently the use of AC transmission system (FACTS) devices and distributed generation resources as technology in power and distribution systems is increasing. This equipment affects various parameters such as voltage profile, line losses, short circuit current, stability, and reliability of the system, and therefore determining the optimal installation location, their number and size are one of the important issues that are considered because the installation of these devices and Resources in non-optimal locations increase system losses and negatively affect voltage profiles and other system parameters. In this paper, the simultaneous optimization of the number, location, and size of distributed generation resources and static synchronous compensation is used and in order to solve the optimization problem, a genetic algorithm (GA) is used. For this purpose, a multi-objective function including operating costs and generation of distributed generation resources and static synchronous compensation and system load capacity are presented and the simulation results were analyzed for two 33 and 69 IEEE standard networks. The results show that with increasing system load, the cost increases because the number of equipment related to distributed generation sources and static synchronous compensator increases. Also, the simultaneous optimization and placement of this equipment reduces costs and increases the load capacity of the distribution system.

کلیدواژه‌ها [English]

  • Optimization
  • dg
  • static synchronous compensator
  • Genetic Algorithm
[1] Ali, Ziad M., et al. "A novel distributed generation planning algorithm via graphically-based network reconfiguration and soft open points placement using Archimedes optimization algorithm." Ain Shams Engineering Journal (2021).
[2] Oda, Eyad S., et al. "Stochastic Optimal Planning of Distribution System Considering Integrated Photovoltaic-Based DG and DSTATCOM under Uncertainties of Loads and Solar Irradiance." IEEE Access 9 (2021): 26541-26555.
[3] Bhadoriya, Jitendra Singh, and Atma Ram Gupta. "Optimal Share of DG and DSTATCOM in Distribution Network Using Firefly Algorithm." Recent Advances in Power Systems. Springer, Singapore, 2021. 497-508.
[4] Saad, Ouali, and Cherkaoui Abdeljebbar. "Historical Literature Review of Optimal Placement of Electrical Devices in Power Systems: Critical Analysis of Renewable Distributed Generation Efforts." IEEE Systems Journal (2020).
[5] Li, Yinghai, et al. "The chaos-based shuffled frog leaping algorithm and its application." 2008 fourth international conference on natural computation. Vol. 1. IEEE, 2008.
[6]A. Khorsandi A. Alimardani B. Vahidi S.H. Hosseinian, “Hybrid shuffled frog leaping algorithm and Nelder–Mead simplex search for optimal reactive power dispatch,” IET Gener. Transm. Distrib, Vol. 5, no. 2, pp. 249–256, 2011.
[7] Ochoa, Luis F., Chris J. Dent, and Gareth P. Harrison. "Distribution network capacity assessment: Variable DG and active networks." IEEE Transactions on Power Systems 25.1 (2009): 87-95.
[8] Ochoa, Luis F., and Gareth P. Harrison. "Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed generation." IEEE Transactions on Power Systems 26.1 (2010): 198-205.
[9] Thangaraj, Yuvaraj, and Ravi Kuppan. "Multi-objective simultaneous placement of DG and DSTATCOM using novel lightning search algorithm." Journal of applied research and technology 15.5 (2017): 477-491.
[10] Weqar, Bushra, Mohd Tauseef Khan, and Anwar Shahzad Siddiqui. "Optimal Placement of Distributed Generation and D-STATCOM in Radial Distribution Network." Smart Science 6.2 (2018): 125-133.
[11] Nazari, Mohammad Hassan, et al. "Optimal multi-objective D-STATCOM placement using MOGA for THD mitigation and cost minimization." Journal of Intelligent & Fuzzy Systems 35.2 (2018): 2339-2348.
[12] Wang, Lingfeng, and Chanan Singh. "Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm." IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38.6 (2008): 757-764.
[13] Singh, R. K., and S. K. Goswami. "Optimal siting and sizing of distributed generations in radial and networked systems considering different voltage dependent static load models." 2008 IEEE 2nd International Power and Energy Conference. IEEE, 2008.
[14] Safari, Amin, et al. "multi-objective model for simultaneous distribution networks reconfiguration and allocation of D-STATCOM under uncertainties of RESs." International Journal of Ambient Energy (2020): 1-10.
[15] Selim, Ali, Salah Kamel, and Francisco Jurado. "Hybrid optimization technique for optimal placement of DG and D-STATCOM in distribution networks." 2018 Twentieth International Middle East Power Systems Conference (MEPCON). IEEE, 2018.
[16] Devi, Sudha, and M. Geethanjali. "Optimal location and sizing determination of Distributed Generation and DSTATCOM using Particle Swarm Optimization algorithm." International Journal of Electrical Power & Energy Systems 62 (2014): 562-570.
[17] Prakash, Prem, and Dheeraj K. Khatod. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review." Renewable and sustainable energy reviews 57 (2016): 111-130.
[18] Das, Sangeeta, Debapriya Das, and Amit Patra. "Operation of distribution network with optimal placement and sizing of dispatchable DGs and shunt capacitors." Renewable and Sustainable Energy Reviews 113 (2019): 109219.
[19] Kawambwa, Shamte, et al. "An improved backward/forward sweep power flow method based on network tree depth for radial distribution systems." Journal of Electrical Systems and Information Technology 8.1 (2021): 1-18.
[20] Raj, Rahul, and P. Suresh Babu. "A backward/forward method for solving load flows in droop-controlled microgrids." Control Applications in Modern Power System. Springer, Singapore, 2021. 367-377.
[21] Garud, Kunal Sandip, Simon Jayaraj, and Moo‐Yeon Lee. "A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models." International Journal of Energy Research 45.1 (2021): 6-35.
[22] Garud, Kunal Sandip, Simon Jayaraj, and Moo‐Yeon Lee. "A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models." International Journal of Energy Research 45.1 (2021): 6-35.
[23] Colla, Valentina, et al. "Ga-based solutions comparison for storage strategies optimization for an automated warehouse." 2009 Ninth International Conference on Intelligent Systems Design and Applications. IEEE, 2009.
[24] Hosseini, Mehdi, and Heidar Ali Shayanfar. "Regular paper modeling of series and shunt distribution FACTS devices in distribution systems load flow." J. Electrical Systems 4.4 (2008): 1-12.
[25] Blažič, Boštjan, and Igor Papič. "A new mathematical model and control of D-StatCom for operation under unbalanced conditions." Electric Power Systems Research 72.3 (2004): 279-287.